Fémmátrixú kerámia kompozitok mikroszerkezeti tulajdonságai

Kerámia gömbhéjerősítésű fémmátrixú kompozitokat állítottunk elő nyomásos infiltrálással. Vizsgáltuk a mikrogömbhéjak mikroszerkezetét külön és öt alumíniumötvözet mátrixanyaggal kapcsolatban. A gömbhéjak főként Al₂O₃ és SiO₂ tartalmú oxidkerámiák. A mintákon röntgendiffrakciós vizsgálatokat és energiadiszperzív röntgenspektroszkópiás méréseket végeztünk. Az eredmények szerint az Al₂O₃ és a SiO₂ eloszlása a gömbhéjak falában nem egyenletes; tűszerű Al₂O₃ fázis van beágyazva a környező SiO₂ fázisba és mullitba. Az Al₂O₃ részecskék egyenlőtlen eloszlása miatt az olvadt alumínium redukálni tudta a mikrogömbhéjak SiO₂-ban dús részét, és ez a gömbhéjak degradációjához vezetett.

1. Bevezetés

A fémmátrixú kompozitok napjainkban egyre nagyobb teret nyernek, amit alátámaszt a témában megjelent cikkek egyre növekvő száma. A csak fém- és gázfázist tartalmazó "hagyományos" fémhabok irodalma széleskörű, de vannak még nyitott kérdések például a habosítási folyamattal kapcsolatban is [1, 2]. A fémhabok egy speciális csoportja, a szintaktikus fémhabok megfelelnek a részecskeerősítésű kompozitok definíciójának is. A szintaktikus fémhabnak számos perspektivikus alkalmazási területe van például a csomagolási, öntészeti és autóiparban is, a nagy energiaelnyelési, csillapítási képessége és kis sűrűsége miatt. Ezekben a porózus anyagokban a porozitást kerámia, illetve fém gömbhéjak mátrixba ágyazásával érik el [3; 4]. A mikrogömbhéjak kereskedelmi forgalomban kaphatók [5], minőségük jelentősen befolyásolja a fémhabok tulajdonságait.

A szintaktikus fémhabok legfontosabb tulajdonsága a nyomószilárdság és az alakváltozás során elnyelt energia. *Wu* és munkatársai a mikrogömbhéjak méretének a nyomószilárdságra gyakorolt hatását vizsgálták. Azt találták, hogy a kisebb gömbhéjak nagyobb nyomószilárdságot biztosítanak a kompozitnak, mivel mikroszerkezetükben kevesebb hibát tartalmaznak, mint a nagyobb gömbhéjak. Rohatgi szintén vizsgálta a gömbhéjak mérethatását, de nem csak a nyomószilárdság, hanem a gyártás, az infiltrálás szemszögéből is, szerinte a nagyobb gömbhéjak könnyebben infiltrálhatók [6]. Palmer megmutatta, hogy a nagyobb gömbhéjak falában nagyobb a porozitás és mikroszerkezetükben több a hiba, mint a kisebbekében [7]. Az ebben a témában végzett zömítővizsgálatok összehasonlítása azonos eredménvre vezetett, mint az eddig ismertetettek [8]. Balch a mátrixról a gömbhéjakra terjedő terhelésátadást vizsgálta. Találtak egy kémiai reakciót is a gömbhéjak és a mátrixanyagok között, amely meghatározó hatású a szintaktikus fémhabok mechanikai tulajdonságaira. Ezért a mikroszerkezet és a gömbhéjak minősége igen fontos [9]. A nyomószilárdság mellett a szintaktikus fémhabok más mechanikai tulajdonságait, szakítószilárdságát, keménységét is vizsgálták [10].

A gyártás során a mátrix és a gömbhéjak közötti nedvesítési szögnek meghatározó szerepe van az infiltrációra és a küszöbnyomásra [11-12]. A nedvesítési szöget sok paraméter, többek közt a kémiai összetétel és az erősítőanyag–mátrix között lehetséges kémiai reakciók befolyásolják. Ezért indokolt a gömbhéjak vizsgálata mikroszerkezeti szinten is. Kutatásunk fő célja a gömbhéjak mikroszerkezete és az alumínium mátrix – kerámia gömbhéj közötti átmeneti réteg vizsgálata volt.

2. Felhasznált anyagok és vizsgálati módszerek

A vizsgált gömbhéjak az Envirospheres Ltd. (Ausztrália) által gyártott SL150 és SL300 típusú termékek voltak, fő paramétereik az 1. táblázatban láthatóak. A fázisösszetételeket röntgendiffrakcióval (XRD), Phillips X-Pert diffraktométerrel határoztuk meg 35 mA katódfűtés, réz anód (CuK α , λ =0,154186 nm) és 40 kV gyorsítófeszültség mellett. A goniométer forgási sebessége 0,04 fok/sec volt. A pásztázó elektronmikroszkópos (SEM) vizsgálatok Phillips XL-30 elektronmikroszkóppal és EDAX Genesis típusú energiadiszperzív röntgenspektroszkóp (EDS) detektorral készültek. A kerámia mikrogömbhéjakra az elektronmikroszkóppal történő felületi leképezéséhez karbont párologtattunk. Az EDS-mérésekhez 15 kV gyorsítófeszültséget használtunk. A mikrogömbhéjakról EDS-térkép is készült.

Később a gömbhéjakból szintaktikus fémhabokat készítettünk a következő mátrixanyagokkal: Al99,5, AlSi12, AlMgSi1, AlCu5 és AlZn5. A gömbhéjak térkitöltése viszonylag nagy (60 térf.%) volt, a gyártási eljárást korábbi cikkünkben [3] közöltük. A szintaktikus fémhabok sűrűség és porozitás adatai a 2. táblázatban láthatók, kémiai összetételükről a 3. táblázat ad tájékoztatást. A mátrixporozitás értékét úgy számítottuk, hogy az elméleti sűrűség és a mért sűrűség különbségét elosztottuk az elméleti sűrűség értékével. A negatív mátrixporozitás infiltrált gömbhéjakra utal. A mátrixporozitás mindig 8% alatt maradt, így az infiltráció jónak mondható. A 3. táblázat értékeit XRD-méréssel határoztuk meg. A mikrogömbhéjak és mátrixanyag találkozásánál levő határréteg elemeloszlásának vizsgálatára políro-

Májlinger Kornél életrajza a Kohászat 2011/3. számában található.

Orbulov Imre Norbert életrajza a Kohászat 2011/3. számában található.

1. táblázat. A gömbhéjak morfológiai tulajdonságai és fázisösszetételük (XRD-vel mérve, t%) [14]

Típus	Átlagos átmérő(µm)	Mérettartomány (95%)(µm)	Fajlagos felület (µm ⁻¹)	Al ₂ O ₃	Amorf SiO ₂	Mullit	Kvarc	Más
SL150 SL300	100 150	56-183 101-330	0,060 0,040	30-35	45-50	19	1	maradék

2. táblázat. A szintaktikus fémhabok sűrűség és porozitás értékei [3]

Minta	Sűrűség (gcm⁻³)		Porozitás (%)			
	Elméleti	Mért	Részecske	Mátrix	Teljes	
Al99,5-SL150	1,34	1,43	50,9	-6,2	44,7	
AI99,5-SL300	1,42	1,52	48,2	-7,2	41,0	
AISi12-SL150	1,32	1,31	50,9	1,1	52,0	
AlSi12-SL300	1,40	1,37	48,2	1,9	50,1	
AlCu5-SL150	1,37	1,53	50,9	-11,6	39,3	
AlCu5-SL300	1,44	1,62	48,2	-12,2	36,0	
AlMgSi1-SL150	1,34	1,52	50,9	-13,4	37,5	
AlMgSi1-SL300	1,42	1,57	48,2	-10,5	37,7	
AlZn5-SL150	1,38	1,49	50,9	-8,0	42,9	
AlZn5-SL300	1,45	1,53	48,2	-5,5	42,7	

3. táblázat. A szintaktikus fémhabok fázisösszetétele XRD-mérések szerint (t%)

				α-	γ-			
Minta	AI	Si	Mullit	Al ₂ O ₃		Kvarc	Amorf	CuAl ₂
Al99,5-SL150	67	8	11	3	1 1	0	0	-
AI99,5-SL300	78	0	11	0	0	0	11	-
AlSi12-SL150	72	7	13	0	0	0	8	-
AlSi12-SL300	72	7	12	0	0	1,0	8	-
AIMgSi1-SL150	60	7	8	0	25	0	0	-
AIMgSi1-SL300	60	6	6	0	28	0	0	-
AlCu5-SL150	60	6	8	8	12	0	0	6
AlCu5-SL300	60	5	10	7	12	0	0	6
AlZn5-SL150	65	5	10	0	20	0	0	-
AlZn5-SL300	68	5	7	0	20	0	0	-

zott metallográfiai mintán vonalmenti EDS-méréseket végeztünk. A mintaelőkészítés lépéseit a *4. táblázat* tartalmazza. A vonalmenti EDS-mérésekhez 20 kV gyorsítófeszültséget használtunk, pontonként 15 s-ig 35 µs-os detektor kiolvasási idővel.

3. Vizsgálati eredmények és kiértékelésük

3.1. A mikrogömbhéjak falának vizsgálata

Az 1. ábrán egy tipikus SL150 típusú

gömbhéj felülete, a 2. ábrán pedig egy Al99,5 mátrixba foglalt gömbhéj keresztmetszeti képe látható SEMfelvételen. Mindkét ábrán tűszerű struktúrák figyelhetők meg a gömbhéj falán. A tűk sűrűn helyezkednek el, és

nincs kitüntetett irányultságuk. A visszaszórt elektron (back-scattered electron, BSE) detektorral készített felvételeken a szürkeárnyalatbeli eltérések eltérő kémiai összetételre utalnak. A megfigyelt tűk igen rövidek és vékonyak, 5-10 µm hosszúak, míg átmérőjük kisebb, mint 0,5 µm.

EDS-térképet készítettünk a mikrogömbhéjak falán és keresztmetszeti csiszolaton különböző mátrixba ágyazott gömbhéjakon, példaként a 3. ábrán SL300 típusú gömbhéj falán készített EDS-térkép látható.

Mindkét gömbhéjtípus (SL150 és SL300) ugyanolyan jelleget mutatott. A 3a ábra a vizsgált felület SEM-felvételét mutatja, ezen is megfigyelhető a tűszerű struktúra. A 3b ábrán látható az alumínium eloszlása, miszerint a "tűk" több alumíniumot tartalmaznak, mint a környező tartományok. Az XRD-mérések szerint az Al₂O₃ és a SiO₂ mullitot (3Al₂O₃·2SiO₂) képez, így az 1. táblázat szerint a gömbhéjak fala mullit és amorf SiO2 keverékéből áll. Ezek szerint az Al₂O₃ eloszlása egyenetlen, található a fal mátrixában (a mullitban) és Al₂O₃-tűként beágyazva ebben a mátrixban. A 3d ábra, mely a szilíciumeloszlást mutatja, ezt egyértelműen alátámasztja. Ezek szerint a tűk nem tartalmaznak szilíciumot, tehát valóban Al₂O₃-tűk. Végül az oxigéneloszlás (3c ábra) teljesen kiegyenlített az Al₂O₃ és a SiO₂ részeknél is. Tehát a vizsgálat Al₂O₃ban gazdag és amorf SiO₂ zónák jelenlétére is utal. Az amorf SiO2 nemkívánatos, mivel az Al₂O₃-mal és a mullittal ellentétben a SiO₂ kémiai

1. ábra. SEM-BSE-felvétel egy SL150 típusú kerámia mikrogömbhéj felületéről

4. táblázat. A mintaelőkészítés lépései vonalmenti EDS-vizsgálatokhoz

Abrazív anyag	A csiszolás/ polírozás ideje (perc)	Csiszolási/ polírozási erő (N)	Forgási sebesség (1/perc)	Forgásirány
P 320 SiC	1	22	220	ellen
6 µm gyémánt	15	27	150	ellen
3 µm gyémánt	6	27	150	ellen
0,05 µm SiO ₂	3	27	125	egyen

2. ábra. SEM-BSE-felvétel egy SL150 típusú kerámia mikrogömbhéj faláról keresztmetszeti csiszolaton

stabilitása nem megfelelő. A szintaktikus fémhab gyártásakor az olvadt alumínium képes a SiO₂-t redukálni, a következő reakció szerint:

$$4A_{l_{(foly.)}} + 3SiO_{2(szil.)} \rightarrow 2Al_2O_{3(szil.)} +$$
$$+ 3Si_{(szil.)}$$
(1)

Ez a diffúzió által irányított reakció a mikrogömbhéjak falának tönkremeneteléhez vezet. Ez a hatás jól látszik például a *4a ábrán*.

A jelenség, ahogy más publikációkban is láthattuk, jelentős nyomószilárdság-csökkenéshez és egyéb mechanikai tulajdonságok romlásához vezet [3, 13, 14]. Ugyanakkor a gyártás szempontjából kedvező is lehet, mert az oldódással járó reakciók általában javítják a nedvesítést. A reakció az AlSi12 mátrixanyag kivételével mindenhol végbement. Az infiltráció hőfoka is jelentősen befolyásolja a reakció sebességét, ezért is nem volt kimutatható reakció Al99,5-SL300 és AlSi12 mátrix esetén, mivel azokat alacsonyabb hőmérsékleten infiltráltuk (690 °C ill. 620 °C-on) [3]. Ez arra utal, hogy van egy határhőmérséklet, ami alatt a reakció nem megy végbe [3]. A reakció az AlSi12 mátrixanyagnál nem ment végbe, mivel a reakció diffúziós és hajtóereje a mikrogömbhéjak fala, illetve a mátrixanyag közötti Si-koncentráció különbsége. A mátrixanyag nagy szilíciumtartalma csökkentette ezt a hajtóerőt, így a reakció nem valósult meg. A 4b ábrán jól látszik, hogy a gömbhéjak fala sértetlen maradt. A legtöbb γ-Al₂O₃ az AlMgSi1 mátrixú szintaktikus fémhabokban volt található. Az AlCu5 mátrix esetében a termodinamikai viszonyok még a CuAl₂ fázis kialakulására is kedvezőek voltak.

3. ábra. SEM-felvétel egy SL300 típusú kerámia mikrogömbhéj felületéről (a) és EDS-térkép erről a területről a következő elemek eloszlására: Al (b), O (c) és Si (d)

 4. ábra. Fénymikroszkópi felvétel egy sérült SL150 (a) és egy hibátlan SL300 (b) gömbhéjról, Al99,5 (a) illetve AlSi12 (b) mátrixban

5. ábra. SEM-felvétel az Al99,5-SL300 szintaktikus fémhabról (a) és EDS-térképfelvételek ennek a területnek az elemeloszlásairól a következő elemekre: Al (b), O (c) és Si (d)

■ 6. ábra. EDS-térképfelvétel AlCu5 SL150 mintán a réz elemeloszlására, CuAl₂ kiválások láthatók

7. ábra. EDS-térképfelvétel AlMgSi1-SL300 mintán a magnézium elemeloszlására, Mg-dúsulás látható a gömbhéj külső falán

8. ábra. SEM-BSE-felvétel AIMgSi-SL150 mintáról, a vonalmenti EDS-mérés helye és eredménye

10. ábra. SEM-BSE-felvétel AlZn5-SL300 mintáról, a vonalmenti EDS-mérés helye és eredménye

3.2. Az átmeneti réteg vizsgálata

56

Először áttekintő EDS-térképeket készítettünk a szintaktikus fémhabok

mikrogömbhéj-mátrix területéről, példaként az 5. ábrán az Al99,5-SL300 minta EDS-térképe látható.

A mátrix mikroszerkezete és a

megszilárdulás utáni szemcsehatárok is megfigyelhetők az alumínium (5b ábra) és szilícium (5d ábra) koncentrációjának eloszlásában. Az oxigén nagyobb koncentrációban csak a gömbhéi falában volt jelen (5c ábra). ezek a megállapítások az összes mintára érvényesek. Az AlSi12 mátrix esetében nagyobb szilíciumlemezek is jelen voltak. Az AlCu5 mátrix esetében rézben gazdag kiválások - az XRD-mérések szerint CuAl₂ fázis voltak megfigyelhetőek (6. ábra, kb. 1 µm x 20 µm befoglaló mérettel). Az AlMgSi1 mátrix esetében a magnézium egyenetlen eloszlást mutatott az alumínium területeken, és a szilíciumlemezekben egyáltalán nem volt detektálható. Mg-dúsulás volt megfigyelhető a mikrogömbhéjak külső falán (7. ábra), ami a magnézium oldódására utal a gömbhéj falába. A mikrogömbhéj-mátrixanyag átmeneti rétegének részletesebb vizsgálatára nagyobb nagyítás melletti vonalmenti EDS-méréseket végeztünk.

Példaként a 8-10. ábrákon vonalmenti EDS-mérések eredményei láthatók AIMgSi1, AICu5 és AIZn5 mátrixok esetére.

A 8. ábrán SL150 típusú gömbhéj nagy nagyítású SEM-BSE-felvétele látható. A gömbhéj külső fala rosszul definiált. Ez arra utal, hogy a mikrogömbhéj fala degradálódott az infiltráció során (cserereakció Al₂O₃ képződéssel). A diffúziós folyamat a gömbhéj külső falán ~2-4 µm széles átmeneti réteg (a B-től a C pontig) képződéséhez vezetett. Korábbi munkáinkban 6 µm-es réteget is megfigyeltünk [14]. A C pont után az alumíniumtartalom a fal aktuális összetétele szerint változott. A D pont után a mérés a gömbhéj belsejének görbülete miatt nem megbízható. A mátrix anyagának lokális összetétele jól követhető az EDS-spektrumokban az alumínium- és szilíciumtartalom változásán, az összes mátrix ötvözet esetében.

Az AlMgSi1-SL150 minta esetében ilyen szilíciumdúsulást figyelhetünk meg az A és B pont között. A B és C pont közel van egymáshoz, ez arra utal, hogy viszonylag keskeny (~3 μm) a detektálható átmeneti réteg. A magnéziumkoncentráció B pont utáni növekedése szerint magnézium oldódott a gömbhéjak falába, a C és D pont között jól megfigyelhető a kölcsönösen együtt változó alumínium- és szilíciumtartalom. A SEM-BSE-fevétellel összhangban a világosabb részen az Al-tartalom megnőtt, míg a Si-tartalom lecsökkent. Az oxigéntartalom tekintetében sem a mátrixban, sem a mikrogömbhéj falában nem volt nagy ingadozás. Ez az eredmény is arra utal, hogy a világosabb fázisok a gömbhéj falában Al₂O₃ részecskék, SiO₂-ba és mullit mátrixba ágyazva.

Az AlCu5 mátrix esetében (9. ábra) A és B pont között CuAl₂ kiválás figyelhető meg, az átmeneti réteg ~3 µm széles volt az SL150 és az SL300 típusú mikrogömbhéjak esetében is. A gömbhéjak falának egy részét rézkiválások fedték, melyek jól láthatók a BSE-felvételen is. A vonalmenti EDSmérések szerint (B és C pontok között) ezek valóban kiválások, réz nem oldódott a gömbhéjak falába.

Az AlSi12 mátrix esetében a gömbhéjak külső fala látszólag sértetlen, mivel a kémiai cserereakciót a viszonylag kis infiltrálási hőmérséklet és a matrix nagy szilíciumtartalma gátolta. Az átmeneti réteg vastagsága kevesebb, mint 1,5 µm volt mindkét mikrogömbhéjtípus esetében.

Az AlZn5 mátrix esetében (10. ábra) az átmeneti réteg vastasága >3 µm volt mindkét mikrogömbhéjtípus esetében. A cinkeloszlás teljesen egyenletes volt az egész mátrixban. A vonalmenti EDS-mérés szerint a gömbhéjak külső falába ~4 µm mélyen cink oldódott be.

Összegzés

Az előzőkben tárgyalt mérések eredményeiből a következő megállapítások tehetők:

 A gömbhéjak mikroszerkezete, térfogataránya és tulajdonságai erősen befolyásolják a szintaktikus fémhabok tulajdonságait. A mérésekből kitűnt, hogy a gömbhéjak fala Al₂O₃tűket tartalmaz, amelyek mullitba, valamint SiO₂-be vannak ágyazódva.

 Az Al₂O₃ egyenlőtlen eloszlása miatt a mikrogömbhéjak falában SiO₂-ben gazdag zónák keletkeztek. A szintaktikus fémhab gyártása során az olvadt alumínium kémiailag megtámadta ezeket a részeket, és ez a redukciós kémiai reakció a gömbhéjak falának jelentős károsodásához vezetett.

– Az Al99,5, AlCu5, AlMgSi1 és AlZn5 mátrixanyagok esetében intenzív reakciót tapasztaltunk, és a diffúzió irányította folyamat fő hajtóereje a gömbhéjak és a mátrix közti szilíciumkoncentráció-különbség volt. Ennek megfelelően a reakciót az AlSi12 mátrixú szintaktikus fémhabok esetében a mátrix jelentős szilíciumtartalma gátolta.

 Az AlCu5 mátrixanyag esetében helyenként rézkiválásokat találtunk a mikrogömbhéjak falán, míg az AlMgSi1 mátrixnál magnézium oldódott a mikrogömbhéjak falának külső rétegébe.

Köszönetnyilvánítás

Köszönet *dr. Sajó Istvánnak* az XRDmérésekért. A munka szakmai tartalma kapcsolódik a "Új tehetséggondozó programok és kutatások a Műegyetem tudományos műhelyeiben" c. projekt szakmai célkitűzéseinek megvalósításához. A projekt megvalósítását a TÁMOP-4.2.2.B-10/1– 2010-0009 program támogatja. A kutatást az NKTH-OTKA PD 83687 szerződés támogatta. A kutatás és a cikk a Bolyai János Kutatási Ösztöndíj támogatásával készült.

Irodalom

- Babcsán, N. Leitlmeier, D. Banhart, J.: Metal foams–High temperature colloids Part I: Ex situ analysis of metal foams. Colloids and Surf A: Physicochem Eng (2005) Asp 261:123-130DOI:10.1016/j.colsurfa.-2004.12.030
- [2] Babcsán, N. García Moreno, F. Banhart, J.: Metal foams–High temperature colloids Part II: In situ analysis of metal foams. Colloids and Surf A: Physicochem Eng (2007) Asp 309:254-263DOI:10.1016/j.cols urfa.2007.02.044
- [3] Orbulov, I. N. Dobránszky, J.: Producing metal matrix syntactic foams by pressure infiltration. Period Polytech Mech Eng. (2008:1) 52:35-42 DOI:10.3311/pp.me.2008-1.06
- [4] Orbulov I. N. Kientzl I. Németh Á.: Fémhabok és kompozitok előállítása infiltrálásos eljárással. BKL Kohászat (2007) 140/5: 41–45.

- [5] Envirospheres Ltd., http://www. envirospheres.com/products.asp, 09.08.2010.
- [6] Rohatgi, P. K. Kim, J. K. Gupta, N. – Alaraj, S. – Daoud, A.: Compressive characteristics of A356/fly ash cenosphere composites synthesized by pressure infiltration technique. (2006) Compos Part A 37:430–437.DOI:10.1016/j.composit esa.2005.05.047
- Palmer, R. A. Gao, K. Doan, T. M.
 Green, L. Cavallaro, G.: Pressure infiltrated syntactic foams –
 Process development and mechanical properties. Mater Sci Eng (2007) A 464:85-92DOI:10.1016/j.msea.2007.01.116
- [8] Balch, D. K. O'Dwyer, J. G. Davis, G. R. – Cady, C. M. – Gray III G.T. – Dunand, D. C.: Plasticity and damage in aluminium syntactic foams deformed under dynamic and quasi-static conditions. Mater Sci Eng (2005) A 391:408–417. DOI:10. 1016/j.msea.2004.09.012
- [9] Balch, D. K. Dunand, D. C.: Load partitioning in aluminum syntactic foams containing ceramic microspheres. Acta Mater (2006)54: 1501–1511. DOI:10.1016/j.actamat. 005.11.017
- [10] Ramachandra, M. Radhakrishna, K.: Synthesis-micro-structure-mechanical properties-wear and corrosion behaviour of an Al-Si (12%)-Flyash metal matrix composite. J Mater Sci (2005) 40:5989-5997 doi:10.1007/ s10853-005-1303-6
- [11] Bárczy, T. Kaptay, Gy.: Modeling the infiltration of liquid metals into porous ceramics. Mater Sci Forum (2005) 473–474:297–302.
- [12] Trumble, P. K.: Spontaneous infiltration of non-cylindrical porosity: close-packed spheres. Acta Mater (1998) 46:2363–2367.
- [13] Orbulov, I. N. Németh, Á. Dobránszky, J.: Hardness testing of metal matrix syntactic foams. In: Proceedings of 7th International Conference on Mechanical Engineering, (2010) 25–26 May, Budapest, Hungary
- [14] Orbulov, I. N. Dobránszky, J. Németh, Á.: Microstructural characterization of syntactic foams. J Mater Sci (2009)44:4013-4019DOI:10.100 7/s10853-009-3552-2