ÖNTÉSZET

ROVATVEZETŐK: Lengyelné Kiss Katalin és Szende György

PABEL, THOMAS¹ – BOZORGI, SALAR^{2,3} – KNEISSL, CHRISTIAN¹ – FAERBER, KATHARINA^{2,4} – SCHUMACHER, PETER^{1,2}

Az AlSi7MgCu ötvözetek melegrepedési hajlama és az ötvözőelemek (magnézium és réz) hatásai

Bizonyos körülmények között az alumíniumöntvények dermedés alatt bekövetkező repedezései komoly problémát jelenthetnek. Ez a jellegzetesség jól ismert, de alakos öntvényekben még nem kellően vizsgált. Ez a tanulmány röviden áttekinti az erre a folyamatra ható tényezőket. Öt, különböző Mg- és Cu-tartalmú AlSi7MgCu ötvözetet vizsgáltak. Elméleti modelleket, köztük a Clyne- és Davies-féle repedékenységi hajlam együtthatót (cracking susceptibility coefficient CSC) vették figyelembe. A szilárd frakció dermedés alatti viselkedésének termodinamikai számításait összehasonlították a kísérlettel meghatározható melegrepedési index (hot cracking indexing – HCI) módszerével. Pásztázó elektronmikroszkópot (SEM) használtak a meglévő mikroszerkezet és a kivált termodinamikai fázisok összehasonlításához. Ezenfelül SEM-et használtak kutyacsont alakú próbatest öntéskor keletkező repedésfelületeinek a vizsgálatához. Az elméleti modellek és a kísérleti melegrepedési indexelési módszer között jó korrelációt figyeltek meg.

Bevezetés

Az AlSi7MgCu öntészeti ötvözeteket széles körben használják, különösen a gépjárműiparban. Alkalmasak bonyolult, vékonyfalú alkatrészek, például hengerfejek előállítására. Alakos öntvények gyártásában komoly problémát jelentenek a melegrepedések, amelyek alapvetően hatnak az öntvény minőségi jellemzőire. Az Al-Si-ötvözetek melegrepedési hajlama általában kisebb, mint más Al-ötvözeteké, amilyenek az Al-Zn, az Al-Mg vagy az Al-Zn-Mg-Cu összetételű ötvözetek [1-3]. Az ötvözőelemek mennyisége azonban befolyásolhatja az Al-Siötvözetek melegrepedékenységét.

A szemcsefinomított ötvözetekben melegrepedések akkor fordulnak elő, amikor a táplálás kétfázisú áramlással már elégtelen, és az olvadék áramlása a szemcsék között nem tudja felvenni a gátolt zsugorodás által okozott deformációt [4]. A már megszilárdult pontokon a szemcsék között hidak képződnek, amelyek nem engedik meg a további kétfázisú áramlást. A szemcsék közötti további mikrotáplálás nem tudja kompenzálni a zsugorodást, a feszültségeket, és deformációk lépnek fel, így repedések keletkezhetnek a dermedés utolsó szakaszában [5-7]. Ezek a repedések megmaradnak a megszilárdult öntvényben.

Osztrák öntészeti szaklapunk, a Giesserei Rundschau ajánlása alapján érkezett publikáció, melynek szerzői az alábbi intézményeket képviselik:

¹Austrian Foundry Research Institute, 8700 Leoben, Austria

³LKR Leichtmetallkompetenzzentrum Ranshofen GmbH, 5282 Ranshofen, Austria ⁴Pankl Racing Systems AG, 8600 Kapfenberg, Austria A melegrepedés csíraképződésének a pontos mechanizmusa azonban még vitatott.

Elméleti háttér

Befolyásoló tényezők

A melegrepedésre ható legfontosabb tényező a vegyi összetétel, amely az adott öntési eljárásnál hat a dermedési hőmérsékletközre, a szemcseméretre, az eutektikus fázisra és a szegregációra.

A dermedési hőmérsékletköz

A dermedési hőmérsékletköz növekedésével általában a melegrepedési hajlam is nő. A hűlési körülményektől függően, a nagy dermedési hőmérsékletköz bonyolult dendritek képződéséhez vezet, amelyek már viszonylag kis szilárd fázisaránynál merev hidakat képeznek. Ennek következtében, a szilárdulás késői szakaszaiban a táplálás erősen hátráltatott. Mivel a tiszta fémeknek és az eutektikus ötvözeteknek a dermedési hőmérsékletköze kicsi vagy nincs, ezek nem mutatnak melegrepedési hajlamot [7-9]. A dermedési közre ható fő tényező a vegyi összetétel. A szennyezők és szegregációjuk, amelyek növelik a dermedési közt, károsak [9]. Ezen felül, a befejező dermedési köz, az ún. terminális dermedési köz (terminal freezing range TFR) nagy fontosságú. A nagy TFR nem kívánatos; a melegrepedések nagyobb kockázatával jár a dermedés utolsó szakaszában [9]. Ha egy eutektikus rendszerben sok dendrit képződik már jóval a szolidusz felett (azaz nagy hőmérsékleten), az ötvözetnek nagy szilárdsá-

²Chair of Casting Research, Metallurgy Department, University of Leoben, 8700 Leoben, Austria

ga van a maradó olvadék végső dermedése alatt, ellenáll a zsugorodási feszültségeknek. Az eutektikushoz közeli összetételű ötvözetekben nagy mennyiségű olvadék dermed izotermikusan eutektikus hőmérsékleten (azaz kis hőmérsékleten) és a zsugorodási feszültségek kicsik maradnak [9]. *Djurdjewic* és társai [10] javasolták a TFR meghatározását 88-98%, 85-95% vagy más szilárd tömegarányú hőmérsékletközökben. A legutolsó százalékarányt figyelmen kívül hagyták a hibaérzékenység miatt [10].

Szemcseméret

A finom szemcsézet jobb tápláláshoz és az eutektikus fázisok egyenletes eloszlásához vezet. Ha a szemcsehatároknál eutektikum van jelen, ennek maximális hatása van a szemcsék szabad mozgásának lehetőségére, alkalmazkodva az öntvény zsugorodásához kétfázisú áramlás révén [11]. Bishop [12] és Lees [13] vizsgálták a szemcsék hatását a melegszakadásra. Azt állították, hogy a durva szemcsék a szemcsehatáron a feszültség nagy koncentrációját eredményezik, tehát melegrepedezést okoznak. Ezzel szemben a finom szemcsék a feszültségkoncentráció csökkenését eredményezik, vele a melegrepedési hajlam csökken [12,13]. A szemcseszerkezet deformációját azonban úgy kell tekinteni, mint a szemcsék hálózatán belüli mozgást, nem egyedi szemcsékét. A finom szemcseméret elérésének legelterjedtebb módja a szemcsefinomítók adagolása vagy a hűlési sebesség növelése. Ebben a vizsgálatban kétféle állandó szemcseméretet tartottak, kokillába öntött mintákban közelítőleg 250 µm-t, és homokformába öntött mintákban közelítőleg 350 µm-t.

Az eutektikus fázis aránya

A mikroszerkezetben az eutektikus fázis nagy aránya és az elégségesen nedvesítő eutektikus fázis csökkenő melegrepedési hajlamot eredményez. Az eutektikum körülveszi a primer kristályos szemcséket. Ezenfelül a szemcsék közötti elégséges eutektikus hártya megkönnyíti a szemcserendszer mozgását. Ha zsugorodás és feszültségek lépnek fel, a kifejlődő repedéseket az utántöltés begyógyítja [7,8]. A szilíciumot tartalmazó ötvöze-

ÖNTÉSZET

tekkel kapcsolatban fontos megjegyezni, hogy a szilícium a dermedés során térfogatnövekedést okoz, elősegítve így a mikrotáplálást. Az olvadékban lévő, kis mennyiségű szenynyező kis olvadáspontú eutektikumokat képezhet. Nagyobb feszültség esetén a melegrepedési hajlam észrevehetően növekszik [12]. Ennek oka a gyenge hidak képződése a dendritek között. Húzófeszültségek fellépésekor a gyenge hidak roncsolódnak és melegrepedés képződhet a szemcsék között [14,15].

Elméleti modellek

A melegrepedési hajlam számításához különböző elméleti modellek állnak rendelkezésre. Az alakos öntvényekhez a legszélesebb körben Clyne és Davies repedékenységi hajlam együttható (cracking susceptibility coefficient - CSC) modelljét használják [16]. Ez a modell azonban csak a Gulliver-Scheil-féle feltételezésen. nem az öntési folyamat körülményein alapuló anyagtulajdonságokat írja le. Más modellek is léteznek, pl. Katgerman [17], Feurer [18] vagy Rappaz és társai [19] által kidolgozottak. Az említett modellek azonban nem mindig alkalmazhatók a különböző öntési eljárásokra, olyanokra, mint a folyamatos, közvetlen és alakos kokillaöntés vagy pl. a hegesztésre. A CSCmodell korrelációban van annak az időnek a vizsgálatán alapuló repedési hajlam-összetétel összefüggéssel, amely alatt végbemehetnek a repedéssel kapcsolatos folyamatok, és a szövet leginkább hajlamos a repedezésre (kritikus időköz a dermedés alatt). A CSC-t úgy határozzák meg, mint két időtartam hányadosát, t_V/t_R , ahol a t_V az érzékeny időköz, és úgy számítják, mint az időkülönbséget a 10%-os és az 1%-os olvadék tömegarány között. A t_R a feszültségoldódási folyamatokra rendelkezésre álló idő, amelyet úgy számítanak, mint az időkülönbséget a 60%-os és a 10%os olvadék tömegarány között.

Kísérletek

A szerzők elvégezték a melegrepedési hajlam átfogó vizsgálatát, hogy összehasonlítsák az elméleti és a gyakorlati módszereket. A CSC-t kváziempirikus alapon és a HCI-t kísérletileg vizsgálták. Öt különböző, változó Mg- és Cu-tartalmú AlSi7MgCu ötvözetet vizsgáltak: AlSi7Mg0,1Cu0,05, AlSi7Mg0,1Cu0,5, AlSi7Mg0,3Cu0,05, AlSi7Mg0,6Cu0,05, és AlSi7Mg0,6 Cu0,5, a továbbiakban ismertetett módszerekkel. Homokformákba és kokillákba való öntéssel végeztek kísérleti vizsgálatokat, hogy értékeljék az öntési eljárás hatását.

TFR

A TFR-t ThermoCalc Classic (TCC, Stockholm, Svédország) szoftverrel, TTA15 adatbázissal számították. A dermedési folyamat szimulálásához számították a meglévő fázisokat és az arányukat különböző hőmérsékleteken, nemegyensúlyi állapotra, a Gulliver-Scheil feltétel használatával. Az öntött mikroszerkezetben a kivált fázisok szobahőmérsékleti prognózisához egyensúlyi feltételeket választottak.

CSC

A CSC-t kváziempirikus alapon számították, a TCC-t használva a hőmérsékletek és a tömegarányok értékeléséhez, gyakorlati termikus elemzéssel kombinálva kokillában (a kokilla hőmérséklete 250 °C) és homokformában, a megfelelő idők t_V és t_R értékeléséhez. A termikus elemzéshez Ktípusú hőelemet használtak.

HCI

A HCI vizsgálatokat 250 °C-os kokillába és homokformába öntött, kutyacsont alakú kísérleti próbadarabokkal végezték. A beömlőrendszer kivételével a formák alakja azonos volt. Az *1. ábra* mutatja a kutyacsont alakú, homokformában készült öntvényt. A HCI-t úgy határozták meg, mint Σ (NOC*WF)/NOF; ahol a NOC – a repedések száma (number of cracks), WF – a mérlegelési tényező, a megfi-

1. ábra. A HCI értékeléshez homokformában készült, kutyacsont alakú öntvény

2. ábra. Különböző melegrepedési szintek WF-értékei [21, 22]. a. Teljesen eltört, b. Súlyos repedés, c. Mérsékelt repedés, d. Hajszálrepedés (csak nagyításban látható)

3. ábra. Egyensúlyban, TCC-vel számított, öntött fázisok szobahőmérsékleten

gyelt melegrepedési szinttől függően (lásd 2. *ábra*) és a NOF – az öntvények száma [11, 20, 21]. A HCI értékei alapján az alábbi besorolásokat használják [22]: HCI < 0,5

melegrepedési hajlam nincs HCI 0,5 – 1,25 csekély repedési hajlam HCI 1,25 – 2,25 mérsékelt repedési hajlam HCI 2,25 – 3,5 nagy melegrepedési hajlam HCI > 3,5 igen nagy melegrepedési hajlam

Mikroszkópia

20 kV-on, BSD-módban pásztázó

4. ábra. SEM, BSD, AlSi7Mg0,6Cu0,5, öntött fázisok, (a) kokilla, (b) homokforma

elektronmikroszkópos (SEM) vizsgálatot végeztek, hogy összehasonlítsák az öntött mikroszerkezetet a TCC eredményekkel és tanulmányozzák a törésfelületeket.

Eredmények

Mikroszerkezet öntött állapotban

A különböző ötvözetek öntött mikroszerkezetében létező fázisokat TCC-vel számították (egyensúlyi feltételek között) és azok a 3. ábrán láthatók. A mikroszerkezet vizsgálata megerősítette az elméletileg előre jelzett eredményeket. A 4. ábrán példaként mutatják az AlSi7Mg0,6Cu0,5 ötvözetet, hogy összehasonlítsák a TCC-vel prognosztizált fázisokat a SEM-mel kimutatottakkal. Minőségileg, az 50 EDX pontelemzésből kitűnik, hogy a homokformába öntött próbatestben nagyobb arányban található Mg2Si.

5. ábra. Törési felületek pásztázó elektronmikroszkópos felvételei a) Dendritek teljesen eltört mintában, WF = 1, b) Dendritek és eutektikus fázis mérsékelten repedt mintában, WF = 0,5 – mechanikusan kinyitva, c) Eutektikum hajszálrepedéses mintában, WF = 0,25 – mechanikusan kinyitva

Repedési felületek

Mikroszkóposan vizsgálták a kutyacsont alakú HCI-próbatestek kokillában történő dermedése alatt indult repedéseinek a felületeit. A csekély melegrepedési szintű mintákat, azaz a repedéssel nem teljesen szétválasztódó próbadarabokat mechanikusan tovább nyitották, hogy megfigyeljék a repedési felületet. Az 5. ábra három, különböző melegrepedési hajlamú öntvény SEMképét mutatja. A mikroszkópi vizsgálat eredményei azt mutatják, hogy a melegrepedések közelében eutektikus fázis nincs, vagy csekély mennyiségben létezik. Ezenfelül, a törési felületek részletes SEM-vizsgálata nem tárta fel kettős hártyák jelenlétét, amelyek repedést indító csírákként működhetnének a dendritközi olvadékban.

TFR

Az 1. táblázat az összes ötvözet ún. terminális dermedési közét (terminal

freezing range), TFR-jét mutatja. Nyilvánvaló, hogy a réztartalomnak domináns hatása van a TFR-re a magnéziumtartalommal szemben. Először, a nagy Cu-tartalom nagy TFR-t eredményez. Másodszor, a kis Mg-tartalom is nagy TFR-t eredményez. Így a legnagyobb TFR-t az AlSi7Mg0,1Cu0,5 ötvözetben érték el (lásd *6. ábra*), a legkisebbet az AlSi7Mg0,6Cu0,05 ötvözetben (lásd *7. ábra*).

CSC

A 2. táblázat három értékelt ötvözet repedékenységi koefficiensét, CSC-jét mutatja. Itt is a réz ötvözőnek van domináns hatása a CSC-re. A nagy Cu-tartalom nagy CSC-t eredményez, a kis Mg-tartalom szintén. Ezen felül, a CSC vizsgálata azt mutatja, hogy a repedékenységi hajlam sokkal kisebb homokformába, mint kokillába való öntés esetén. Ennek az oka a hosszabb derme1. táblázat. Az értékelt ötvözetek TCC-vel számított terminális dermedési köze

Ötvözet	TFR [°C]	
AlSi7Mg0,1Cu0,5	46,0	
AlSi7Mg0,6Cu0,5	27,0	
AlSi7Mg0,1Cu0,05	17,0	
AlSi7Mg0,3Cu0,05	9,5	
AlSi7Mg0,6Cu0,05	4,0	

 táblázat. Az értékelt ötvözetek CSC-értékei

Ötvözet	CSC		
	Kokillába	Homok-	
	öntött	formába	
		öntött	
AlSi7Mg0,1Cu0,5	7,3	0,69	
AlSi7Mg0,6Cu0,5	4,5	0,36	
AlSi7Mg0,1Cu0,05	3,7	0,33	

dési idő a homokformában, és a jelenlévő eutektikum nagyobb mennyisége, amely a repedések begyógyításának a folyamatát indíthatja meg.

6. ábra. AlSi7Mg0,1Cu0,5 ötvözet TFR (45 °C) számítása, TCC-szoftverrel

HCI

A *3. táblázat* mutatja a melegrepedési hajlam (HCI) értékelési eredményeit. Minden ötvözetből öt melegrepedési próbatestet vizsgáltak (NOF = 5).

A réznek domináns hatása van a HCI-re is. A nagy Cu-tartalom nagy HCI-t eredményez, a kis Mg-tartalom szintén. Ezenkívül, a homokformába öntött ötvözetek melegrepedési hajlama elhanyagolható.

A kísérleti eredmények összefoglalása A 8. ábra mutatja az elméleti modellek és a kísérleti melegrepedési index módszer (HCI) eredményeinek az összefoglalását különböző AlSi7MgCu ötvözetek esetére. A bal oldali y-tengelyen a TFR-értékeket ábrázolták. A jobb oldali y-tengelyen a CSC- és a HCI-értékek láthatók, a HCI-értékeket tízzel szorozták, hogy a kétféle mérési értéket egy tengelyen lehessen mutatni.

Összegzés

Röviden ismertetik a melegrepedésre ható tényezőket. Öt különböző, változó Mg- és Cu-tartalmú AlSi7MgCu ötvözetet vizsgáltak három módszerrel: elméleti TFR (Gulliver-Scheil feltétel), kváziempirikus CSC-modell, kísérleti HCI-vizsgálat.

Eskin és társai [4] kokillaöntési beszámolójával szemben, mindhárom elvégzett vizsgálatfajta ugyanazt a trendet mutatja (lásd a 8. ábrát is): A Cu-tartalomnak domináns hatása van az AlSi7MgCu ötvözetek melegrepedési hajlamára. A nagy Cu-tartalom nagy melegrepedési hajlamot eredményez (nagy TFR, magas HCI és CSC), a nagy Mg-tartalom kis melegrepedési hajlamot eredményez (kis TFR, alacsony HCI és CSC). Ezenkívül, a SEM-vizsgálatokban elméletileg előre jelzett fázisokat is találtak. Nagyobb Cu-koncentrációknál a dermedés során Cu-fázisok válnak ki Al₂CuMg, Al₅Cu₂Si₆Mg₈ és Al₂Cu formában; ennek negatív hatása van, csökkenti az ötvözet mikrotáplálást nyújtó eutektikumának mennyiségét.

Annak ellenére, hogy a homokformába öntött anyag szemcsemérete nagyobb, ilyen öntéskor általában kisebb melegrepedési hajlam figyelhető meg. Öntött állapotú ötvözetekben, a kivált Mg-tartalmú fázisok mennyisége az eutektikumban, a homokformába való öntéskor nagyobb, mint kokillaöntéskor. A kevésbé szilárd homokforma alkalmazkodni tud a zsugorodási deformációkhoz. Hasonló szemcseméretű AlSi7MgCu ötvözetek esetén, anyagtulajdonságként jó korrelációt figyeltek meg az elméleti modellek és a kísérleti melegrepedési index módszer között.

A melegrepedési hajlam előrejelzésének egy új elméleti eszköze jelentős érdeklődésre tarthat számot, különösen új öntészeti ötvözetek fejlesztéséhez. A melegrepedési hajlam kísérleti vizsgálata bonyolult. A TCC-számítások a melegrepedési hajlam mennyiségi prognosztizálásának megfelelő módszerét képezik.

Köszönetnyilvánítás

E munka egy részét pénzügyileg támogatta az FFG Austrian Research Promotion Agency.

Irodalmi hivatkozások

- F. Matsuda, K. Nakata, K. Tsukamoto, S. Johgan: Combined Effect of Current Pulsation and Zr Addition on Improvement of Solidification Cracking of Al-Zn-Mg Alloy Weld Metal Transactions of JWRI, 14, No. 2 (1985), 99–104.
- [2] F. Matsuda, K. Nakata and Y. Shimokusu: Effect of Additional Element on Weld Solidification Crack Susceptibility of Al-Zn-Mg, Trans-

3. táblázat. Az értékelt ötvözetek HCI-értékei é	s melegrepedési hajlama
--	-------------------------

Ötvözet	НСІ	Melegrepedési hajlam	НСІ	Melegrepedési hajlam
	Kokillába öntött		Homokformába öntött	
AlSi7Mg0,1Cu0,5	0,8	kis hajlam	0,01	nincs hajlam
AlSi7Mg0,6Cu0,5	0,6	kis hajlam	0,01	nincs hajlam
AlSi7Mg0,1Cu0,05	0,3	nincs hajlam	0,01	nincs hajlam
AlSi7Mg0,3Cu0,05	0,22	nincs hajlam	-	nincs hajlam
AlSi7Mg0,6Cu0,05	0,01	nincs hajlam	-	nincs hajlam

8. ábra. Különböző AlSi7MgCu ötvözetek melegrepedési hajlama elméleti és kísérleti úton meghatározott TFR, CSC és HCI paraméterek alapján. Die Mold – kokillába öntött, Sand Mold – homokformába öntött

actions of JWRI, 12, No. 1 (1983), 81–87.

- [3] G. L. Petrov, A. G. Makarov: The sensitivity of Al-Zn-Mg Alloy to Hot Cracking During Welding, Avtomaticheskaya Svarka, No. 9 (1961), 18.
- [4] D. G. Eskin, L. Katgerman: A Quest for a New Hot Tearing Criterion, Metallurgical and Materials Transactions A, 38 (2007), 1511–1514.
- [5] E. Cicală, G. Duffet, H. Andrzejewski, D. Grevey and S. Ignat: Hot cracking in Al–Mg–Si alloy laser welding – operating parameters and their effects, Materials Science and Engineering A, 395 (2005), 1–9.
- [6] E. Schubert, M. Klassen, J. Skupin, G. Sepold: Effect of filler wire on process stability in laser beam welding of aluminium-alloys, Proceedings of the 6th International Conference on CISFFEL, Toulon, France (1998), 195–203.
- [7] T. W. Clyne, G. J. Davies: The influence of composition on solidification cracking susceptibility in binary alloy systems, The British Foundryman, 74 (1981), 65–73.
- [8] E. Brunhuber, Giesserei-Lexikon (Berlin: Schiele & Schön, 14. Auflage, 1988), 1100-1102.
- [9] A. A. Gokhale: Solidification Cra-

cking: A Review, Transaction of the Indian Institute of Metals, 39 (1986), 153–164.

- [10] M. B. Djurdjevic, R. Schmid Fetzer: Thermodynamic calculation as a tool for thixoforming alloy and process development: Material Science and Engineering A, 417 (2006), 24–33.
- [11] S. Li: A study of hot tearing in wrought aluminum alloys, PhD. thesis, University of Quebec, 1999), 7-68, 69–90.
- [12] H. F. Bishop, C. G. Ackerlind, W. S. Pellini: Investigation of metallurgical and mechanical effects in the development of hot tearing, Trans. AFS, 65, 1957, 247–258.
- [13] D. C. G. Lees: The Hot Tearing Tendencies of Aluminium Casting Alloys, The Journal of the Institute of Metals, 72 (1946), 343.
- [14] J. A. Spittle, A. A. Cushway: Influences of superheat on grain structure on hot-tearing susceptibilities of Al-Cu alloy castings, Metals Technology, 10 (1983), S. 6–13.
- [15] J. A. Dantzig, M. Rappaz: Solidification (Lausanne: EPFL Press, CRC Press, 2009), 519–565.
- [16] T. W. Clyne, G. J. Davies: Comparison between experimental data and theoretical predictions relating to dependence of solidification cra-

cking on composition, Proceedings of the Conference on Solidification and Casting of Metals, Metals Society, London (1979), 274–278.

- [17] *L. Katgerman:* A Mathematical Model for Hot Cracking of Aluminium Alloys During D.C.Casting, Journal of Metals (1982), 46–49.
- [18] U. Feurer: Mathematisches Modell der Warmrissneigung von binären Aluminium Legierungen, Giesserei Forschung, 28 (1976), 75-80.
- [19] M. Rappaz, J. M. Drezet, M. Gremaud: A New Hot-Tearing Criterion, Metallurgical and Materials Transactions A, 30A (1999), 449–455.
- [20] B. Lenczowski, H. Koch, K. Eigenfeld: Neue Entwicklungen auf dem Gebiet der warmfesten Aluminium-Gusswerkstoffe, Gießerei, 8 (2004), 32–38.
- [21] *A. Franke:* Design of new highperformance aluminium casting alloys, PhD. thesis, University of Leoben, 2006), 50-61.
- [22] C. Kneissl, T. Pabel, G. Dambauer, P. Schumacher: Formenkonzept und Ergebnisse gießtechnologischer Versuche zur Legierungsentwicklung im Niederdruckkokillenguss, Giesserei-Rundschau, 56 (2009), 120–125.

Fordította: Szende György