- [2] Burnett, P. and T. Page: Surface softening in silicon by ion implantation. Journal of materials science, 1984. 19(3): p. 845–860.
- [3] *Jönsson, B. and S. Hogmark:* Hardness measurements of thin films. Thin solid films, 1984. 114(3): p. 257–269.
- [4] Burnett, P. J. and D. Rickerby: The mechanical properties of wear-resistant coatings: I: Modelling of hardness behaviour. Thin Solid Films, 1987. 148(1): p. 41–50.
- Johnson, K.: The correlation of indentation experiments. Journal of the Mechanics and Physics of Solids, 1970. 18(2): p. 115–126.
- [6] Marsh, D.: Plastic flow in glass. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1964. 279(1378): p. 420–435.
- [7] *Tabor, D.:* The hardness of solids. Review of physics in technology, 1970. 1(3): p. 145.
- [8] Tuck, J., et al.: Modelling of the hardness of electroplated nickel coatings on copper substrates. Surface and Coatings Technology, 2000. 127(1): p. 1–8
- [9] Tuck, J. R., et al.: On the application of the work-of-indentation approach to depth-sensing indentation experiments in coated systems. Surface and Coatings Technology, 2001. 137(2-3): p. 217–224.

- [10] Puchi-Cabrera, E.: A new model for the computation of the composite hardness of coated systems. Surface and Coatings Technology, 2002. 160(2-3): p. 177–186.
- [11] *lost, A., et al.*: A comparison of models for predicting the true hardness of thin films. Thin Solid Films, 2012. 524: p. 229–237.
- [12] Coorevits, T., et al.: An integral approach of indentation of Functionally Graded Materials. Surface and Coatings Technology, 2020. 381: p. 125–176.
- [13] Mata, M., O. Casals and J. Alcala: The plastic zone size in indentation experiments: The analogy with the expansion of a spherical cavity. International Journal of Solids and Structures, 2006. 43(20): p. 5994–6013.
- [14] Ichimura, H., F. Rodriguez, and A. Rodrigo: The composite and film hardness of TiN coatings prepared by cathodic arc evaporation. Surface and Coatings Technology, 2000. 127(2-3): p. 138–143.
- [15] Ichimura, H., Y. Ishii and A. Rodrigo: Hardness analysis of duplex coating. Surface and Coatings Technology, 2003. 169: p. 735–738.
- [16] Széll Attila: Melegalakító szerszámacélon kialakított karbonitridált réteg mikroszerkezetének optimalizálása további pvd bevonatoláshoz, Dunaújvárosi Egyetem, TDK dolgozat, 2019.

HLAVÁCS ADRIENN – SCHWEITZER BENCE – MERTINGER VALÉRIA – BENKE MÁRTON

Melegen hengerelt alakítható alumíniumötvözetek fülesedése és a fő ötvözők hatása

Jelen kutatásban melegen hengerelt állapotú, új összetételű, alakítható (3xxx-es és 5xxx-es típusú) alumíniumötvözetek fülesedését vizsgáljuk. A lemezek vastagságából adódóan a konvencionális csészehúzó vizsgálatok nem alkalmazhatóak, ezért az általunk kidolgozott fülesedést becslő módszert alkalmazzuk, melyhez kizárólag textúravizsgálatok eredményeire van szükség. Az eredményekből megállapítható, hogy a két ötvözet másképp viselkedik a meleghengerlés után, illetve, hogy az ötvözőtartalom az egyik ötvözet esetében befolyásolja, a másik ötvözet esetében nincs hatással a fülesedés értékeire.

Bevezetés

Az alumínium (Al) alapú ötvözetek felhasználás szempontjából nemesíthető és alakítható ötvözetek csoportjára bonthatók. Az alakítható alumíniumötvözetek családjába tartoznak az ötvözetlen (1xxx-es), a mangán- (Mn) tartalmú (3xxx-es), a magnézium- (Mg) tartalmú (5xxx-es) és az egyéb ötvözőket tartalmazó Al (8xxx-es) ötvözetek. Ezen ötvözetekből készült félkész termékek végső tulajdonságait nagymértékben befolyásolja a felhasznált alapanyag ötvözőtartalma és az előállítás módja [1–5]. Az alakítás és az ötvözőtartalom hatását a folyáshatárra alakítható alumíniumötvözetek esetében a 1. ábra mutatja.

A hengerléssel előállított félkész termékek tulajdonságaiban fontos szerepet játszik az alakíthatóság irányfüggése is, amelyet a meleg-, illetve hideghengerlés, valamint az alkalmazott lágyító hőkezelések során kialakuló kristálytani

Hlavács Adrienn szakmai életrajzát a 2019/1. számunkban közöltük.

Schweitzer Bence 2019-ben szerzett anyagmérnöki diplomát a Miskolci Egyetem Műszaki Anyagtudományi Karán. Jelenleg ugyanott kohómérnöki MSc-képzésén 3. féléves hallgató. Főbb kutatási területei: röntgendiffrakciós textúravizsgálatok, fülesedés becslő módszer alkalmazása FKK és TKK rácsú fémek esetén.

Dr. Mertinger Valéria szakmai életrajzát a 2017/2. számunkban közöltük.

Dr. Benke Márton szakmai életrajzát a 2019/1. számunkban közöltük.

2. ábra. Különböző textúrájú mélyhúzott alumínium csészék [6]

textúra befolyásol [3]. A kristálytani textúra okozta inhomogenitás kimutatásának legelterjedtebb módja a csészehúzó vizsgálat. Ennek során textúrás anyagok esetében lehúzott csészén magasabb (fülek), illetve mélyebb (völgyek) figyelhetőek meg. A legelterjedtebb alumíniumötvözetek esetében négyes szimmetria látható a fülek megjelenésében. Hidegen hengerelt lemezek esetében a fülek hengerlési irányhoz (HI) képest (ϕ) 45° + (n *90°) helyeken, míg újrakristályosodott állapotban a HI-hoz képest a 0° + (n*90°) irányokban jelentkeznek (2. ábra) [3, 6–8].

A csészehúzó vizsgálatok elvégezhetők a végvastagságú lemezeken, így a félkész termékek jellemzése megoldott. Napjainkban már fontos az alapanyag viselkedésének ismerete a teljes gyártási folyamat alatt, különösen olyan esetekben, amikor új összetételű ötvözetek állnak bevezetés előtt. A melegen hengerelt állapotú leme-

zek esetében azonban a csészehúzó vizsgálat nem végezhető el a lemezek vastagsága miatt. A Miskolci Egyetem Fémtani, Képlékenyalakítási és Nanotechnológiai Intézete által kidolgozott {200} pólusábra alapú módszer alkalmas alumíniumötvözetek fülesedésének jellemzésére széles lemezvastagság-tartományban [9-14]. Kutatásunk során célunk új összetételű, 3xxx és 5xxx típusú alakítható alumíniumötvözetek fülesedésének jellemzése a teljes gyártási folyamat során. Jelen cikkünkben csak melegen hengerelt állapotú lemezek fülesedését mutatjuk be olyan ötvözeteken, melyekben az Fe és Si tartalma az elterjedt ötvözetekhez viszonyítva szélesebb tartományban változik.

Elvégzett vizsgálatok

Alakítható alumíniumötvözetek családjába tartozó 3xxx és 5xxx típusú melegen hengerelt állapotú ötvözetek vizsgálatát végeztük el. A vizsgálatok során 30/50-nel jelöltük az alap ötvözeteket, amihez képest vizsgáltuk az ötvözőtartalom változását. A 3xxx-es ötvözetek esetében a szilícium- (Si) és a vas- (Fe) tartalom hatását vizsgáltuk. Egyik minta esetében megmaradt az eredeti Fe/Si arány, másik minta esetében megnövekedett. Az 5xxx-es ötvözetek esetében a Mn és az Mg változását vizsgáltuk. A vizsgált ötvözetek ötvözőinek változását az 1. táblázat mutatja.

A meleghengerléseket VonRoll típusú kísérleti hengerállványon végeztük, a 3xxx-es ötvözetek esetében 470 °Con 6,7 mm vastagságig, az 50, 51 és 52 jelű ötvözetek esetében 450 °C-on 5 mm vastagságig, az 53, 54 és 55 jelű ötvözeteken 450 °C-on 7 mm vastagságig.

A röntgendiffrakciós textúravizsgálatokat a Miskolci Egyetem Fémtani, Képlékenyalakítási és Nanotechnológiai Intézet Röntgendiffrakciós Laboratóriumában található Euler-bölcsővel felszerelt Bruker D8 Advance diffraktométerrel végeztük (3. ábra), az alábbi paraméterek alkalmazásával: CoKα sugárzás, 40 kV csőfeszültség, 40 mA áram, gyűjtési idő 10 s, lépésköz (Δ2Θ) 0,05°. A mérés során a legnagyobb relatív intenzitású, {111}, {200} és {220} pólusábrákat vettük fel. A pólusábrák alapján kiszámítottuk az orientációs eloszlásfüggvényt (ODF). Az ODF szintetizálása során először a mért pólusábrákat újraszámítottuk, hogy megkapjuk a holtterek adatait is, vagyis a teljes, $\chi = 0-90^{\circ}$ tartományhoz tartozó pólusábrákat. Az újraszámításhoz a hengerlést jellemző ortorombos alakváltozást használtuk, ami a HI és keresztirány (KI) tengelyeire egyaránt szimmetrikus pólusábrát eredményez.

Az intézetünkben kidolgozott pólusábra alapú módszert alkalmaztuk a vizsgált alumíniumlemezek fülesedésének becslésére. A módszer alapja, hogy a {200} pólusábra teljes intenzitáseloszlás-függvényének a hengerlési síkra eső merőleges vetülete jó közelítéssel azonos a csészehúzáskor kapott profillal. A módszer első lépése pólusábrák mérése (4a ábra), újraszámítása (4b ábra), majd a {200} ref-

Ötvözetcsalád	Ötvözet jelölése	Ötvözőtartalom (tömegszázalék)				Arány
		Mn	Si	Fe	Mg	Fe/Si
3xxx ötvözet	30	1,08	0,25	0,6		2,4
	31	1,08	0,15	0,36	-	2,4
	32	1,08	0,15	0,40	-	2,6
5xxx ötvözet	50	0,35	-	-	3,28	
	51	0,13		-	3,42	-
	52	0,44	-	-	3,25	
	53	0,28	-	-	4,91	
	54	0,32		-	4,60	1
	55	0,42			4,19	

1. táblázat. A vizsgált ötvözetek

3. ábra. Euler-bölcsővel felszerelt Bruker D8 Advance diffraktométer

lexió esetében a χ - (a diffraktáló nyaláb normálisa és a normál irány közötti szög) metszetek illesztése n darab Gauss-görbével. Ezután meghatározzuk a Gauss-görbék területeit (T_i^{ϕ}), majd szorozzuk a Gauss-görbék maximumához tartozó χ -érték szinuszával (sin $\chi^{\varphi}_{MAX,i}$, *4c ábra*). Az ily módon súlyozott intenzitásadatokat összegezzük az adott φ (HI-val bezárt szög a hengerlési síkon) értékhez,

végül az összegzett intenzitásokat ábrázoljuk φ függvényében, ami a csészeprofil relatív változását adja (4d ábra) [9–13].

A becsült fülesedés számszerű meghatározásához a csészehúzó vizsgálatok során alkalmazott átlagos fülesedés számítási módszert alkalmaztuk (1–5. képletek) ahol, h_{pi} a csésze magassága a füleknél, \overline{h}_p az n darab fülnél mért csészemagasságok átlaga, h_{vi} a csésze magassága a völgyeknél, \overline{h}_v az n darab völgynél mért csészemagasságok átlaga, h_e az átlagos fülmagasság, h az átlagos csészemagasság, Z a becsült átlagos fülesedés [13].

$$h_p = (h_{p1} + h_{p2} + \dots + h_{pn})/n$$
 (1)

$$h_v = (h_{v1} + h_{v2} + \dots + h_{vn})/n$$
 (2)

$$h_e = h_p - h_v \tag{3}$$

$$h = (h_p + h_v) / 2$$
 (4)

$$Z = (h_e / h \cdot 100)$$

Eredmények

Az 5. ábra mutatja a 3xxx-es típusú

melegen hengerelt alumíniumötvözetek becsült csészeprofiljai és a becsült átlagos fülesedés eredményeit. Mindhárom ötvözet esetében alakításra jellemző, négyes szimmetriájú csészeprofilt kapunk. A becsült átlagos fülesedés értékei esetében megfigyelhető, hogy a Fe- és a Si-tartalom csökkentése növeli (2,01-ről 2,71). Az Fe/Si arány növelése szintén erősíti az alakítási fülesedés mértékét (2,71-ről 3,31).

(5)

Összefoglalás

A melegen hengerelt 3xxx-es és 5xxx-es típusú alumíniumötvözetek vizsgálatának eredményeiből megállapítható, hogy a 3xxx-es ötvözetre erős alakítási fülesedés jellemző, melyet a Si-tartalom 0,2 m/m%-os csökkentése, valamit a Fe 0,2 m/m%-os csökkentése tovább erősít. Ezek alapján, az ötvözetek tervezésekor érdemes figyelembe venni a Si-

5. ábra. A 3xxx-es melegen hengerelt alumíniumötvözetek becsült csészeprofiljai és a becsült átlagos fülesedés eredményei

A becsült csészeprofilokat és a becsült átlagos fülesedés eredményeit a melegen hengerelt 5xxx-es ötvözet esetében a 6. ábra mutatja. Az eredmények alapján megállapítható, hogy meleghengerlést követően 8-as szimmetriájú, közel textúramentes csészeprofilokat kapunk, ami a becsült átlagos fülesedés kis értékén is jelentkezik (Z = 0,28 – 1,1).

ábra: A polusabra alapú teleseusest becsio mouszer lepesel: a) mert (200) polusábra; b) újraszámított (200) polusábra jelölve egy tetszőleges χ -metszettel; c) χ -metszet illesztése Gauss-görbékkel; d) (200) teljes intenzitáseloszlás-függvény merőleges vetü-lete a hengerlési síkra [9–11]

6. ábra. Az 5xxx-es melegen hengerelt alumíniumötvözetek becsült csészeprofiljai és a becsült átlagos fülesedés eredményei

és Fe-ötvözők növelésének hatását a lemezek alakváltozó képességének inhomogenitására. Az 5xxx-es ötvözetnél szinte fülesedésmentes viselkedést tapasztaltunk, melyet a Mn 0,2 m/m%-os csökkentése, valamint 0,1 m/m%-os növelése, továbbá a Mg mennyiségének 0,2 m/m%-os növelése érdemben nem befolyásol.

Köszönetnyilvánítás

A cikkben ismertetett kutatómunka az EFOP-3.6.1-16-2016-00011 jelű "Fiatalodó és Megújuló Egyetem – Innovatív Tudásváros – a Miskolci Egyetem intelligens szakosodást szolgáló intézményi fejlesztése" projekt részeként – a Széchenyi 2020 keretében – az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósult meg.

Irodalom

- R. E. Sanders Jr., S. F. Baumannh, H. C. Stumpf: Wrought Non-Heat-Treatable Aluminum Alloys, Treatise on Materials Science and Technology Vol. 31, 1989, 65–105
 F. Käuse: Alum(sium kézikénuk, 1984)
- [2] E. Köves: Alumínium kézikönyv, 1984
 [3] I. J. Polmear: Light Alloys (Fifth Edition), Metallurgy of
- the Light Metals, 2017 [4] *E. A. Starke Jr.*: Alloys: Aluminum, Encyclopedia of Con-
- densed Matter Physics, 2005, 18–24.

- [5] C. Vargel: Corrosion of Aluminium Second Edition, 2020
- [6] T. Sheppard, M. A. Zaidi: Influence of hot-working parameters on earing behaviour of Al–2Mg sheet, Metals Technology Vol. 9, 1982, 368–374.
- [7] P-W. Kao: Texture and earing behaviour of cold-rolled aluminium alloy 3004. Materials Science and Engineering Vol. 74 Issue 2, 1985, 147–157.
- [8] O. Engler: Control of texture and earing in aluminium alloy AA 3105 sheet for packaging applications, Materials Science and Engineering A 538, 2012, 69–80.
- [9] M. Benke, A. Hlavacs, I. Piller, V. Mertinger: Lemezek fülesedése és a {h00} pólusábrák közötti kapcsolat. BKL Kohászat 152, 2019/3, 36–39.
- [10] M. Benke, A. Hlavacs, P. Imre, V. Mertinger: Prediction of earing of aluminium sheets from {h00} pole figures, European Journal of Mechanics – A/Solids Vol. 81, 2020, 103950
- [11] Benke M.: A kristálytani anizotrópia (textúra) újszerű megközelítése, Habilitációs értekezés, 2020
- [12] M. Benke, B. Schweitzer, A. Hlavacs, V. Mertinger. Prediction of earing of cross-rolled Al sheets from {h00} pole figures, Metals 10(2), 2020, 192.
- [13] M. Benke: Prediction of earing of aluminium sheets from {111} pole figures, Crystallography. Reports, 2020, 980–984.
- [14] A. Hlavacs, M. Szűcs, V. Mertinger, M. Benke: Prediction of Earing of Hot-Rolled Al Sheets from Pole Figures Metals 11, 2021, 99.