ÖNTÉSZET

ROVATVEZETŐK: Biró Nóra és dr. Dúl Jenő

MÁDI LAURA – KAZUP ÁGOTA – BUBONYI TAMÁS – VARGA LÁSZLÓ A homokmagokból eltérő öntési hőmérsékletnél felszabaduló gázok nyomásváltozásának és az öntvényben megdermedt gázhólyagok kialakulásának vizsgálata

A homokmagok kötőanyagának kiégése során képződött gázok az öntvényben gázhólyagos öntvényhibákat okozhatnak. Jelen cikkünkben bemutatjuk az eltérő öntési hőmérsékleten (680, 730 és 780 °C) öntött, azonos méretű homokmagokból fejlődő gázok nyomásváltozásának vizsgálatát. Az öntvényben megdermedt gázhólyagok megjelenési formáit és az öntvény névleges mérettől való eltérését CT, optikai és pásztázó elektronmikroszkóp (SEM) segítségével vizsgáltuk.

1. Bevezetés

Az öntészeti tudomány és technológia fejlődésének köszönhetően újabb lehetőségek nyílnak a komplexebb és a vékonyabb falvastagságú öntvények gyártására. A bonyolult öntvénygeometria általában nagyobb magfelületet eredményez, amellyel az olvadt fém érintkezik [1]. A magfelület növelése és a kilevegőztetési nehézségek jelentősen befolyásolják a homokmagban kialakuló nyomás nagyságát és a gázbetörési hajlamot. A gáznyomás változásának modellezése a homokmagokban az öntőipar egyik kiemelt műszaki feladata [2-5]. A homokmagból származó gázporozitást gázhólyagnak nevezzük. A gázhólyag (blow-holes) kifejezést széles körben használják az öntvényben található különféle üregek leírására. Gázhólyag alatt a folyékony fém felületén keresztül történő mechanikus gázbetörés okozta gázporozitást értjük [6]. Ez az öntvényhiba nem foglalja magába a fémben oldott és a felületen keresztül bediffundáló gázok kiválását, valamint a felületi turbulencia által bekevert gázokat. A maggáz okozta gázhólyagok kis nyomású gázokat tartalmaznak. Nagyban különböznek a mikroporozitásoktól, amelyek kisméretűek, gömbszerűek és

nagy nyomású gázokat tartalmaznak. A gázhólyag felületét jellegzetesen vastag, bőrszerű kettős oxidhártya fedi. A gázhólyag jellegzetes formája és alakja az *1. ábrán* látható.

Az összefüggő gázhólyag képződése szempontjából az első gázbuborék kialakulása a legkritikusabb. A későbbiekben felszabaduló gázok tovább tágíthatják a már kialakult gázhólyagot, hiszen az első kivált gázbuborék az őt határoló oxidhártya miatt ún. nyomvonalat hoz létre az olvadékban. A gázhólyag felületi feszültsége a nagyobb hőmérsékletű helyeken lesz minimális, vagyis az utoljára

Mádi Laura 2016-ban szerzett MSc kohómérnöki diplomát a Miskolci Egyetem Műszaki Anyagtudományi Karán öntészet szakirányon. Jelenleg a Kerpely Antal Anyagtudományok és Technológiák Doktori Iskola PhD-hallgatója. Kutatási területe: öntés során a homokmagokban kialakult gáznyomások mérése.

Kazup Ágota 2020-ban szerzett MSc kohómérnöki diplomát a Miskolci Egyetem Fémtani, Képlékenyalakítási és Nanotechnológiai Intézetben, ahol jelenleg tudományos segédmunkatársként tevékenykedik. 2020-ban a Kerpely Antal Anyagtudományok és Technológiák Doktori Iskolában folytatta tanulmányait. Kutatási területe: két- és háromdimenziós szerkezetvizsgálatok módszertanainak kutatása.

Bubonyi Tamás 2019-ben szerzett Pro Scientia aranyérmet, majd kohómérnöki diplomát a Miskolci Egyetem Műszaki Anyagtudományi Karán. Jelenleg a Kerpely Antal Anyagtudományok és Technológiák Doktori Iskola PhD-hallgatója. Kutatási területe: számítógépi tomográfia anyagtudományi alkalmazása.

Dr. Varga László öntészeti szakirányos kohómérnöki oklevelét 1999-ben szerezte a Miskolci Egyetem Kohómérnöki Karán, majd doktori disszertációját 2003-ban védte meg. 2014-ben tért vissza a Miskolci Egyetem Műszaki Anyagtudományi Karára, ahol 2015 óta az Öntészeti Intézet igazgatója.

dermedő öntvényrészekben. A gázhólyagot a természetben fellépő erők oda mozgatják, ahol a lehető legkisebb a gázhólyag energiája. Ezt az erőt nevezik határfelületi gradiens erőnek [7].

Amennyiben a dermedési és az áramlási viszonyok lehetővé teszik, a homokmaghoz kapcsolódó gázhólyag a nyomás leépülésével vissza is húzódhat, melynek következményeként kettős oxidhártyát hagy maga után. Ezt az öntvényhibát nevezik ún. lehámlásos (exfoliation) öntvényhibának, amely az 1b ábrán látható. A lehámlásos öntvényhibát a maggáz által kitágított, majd visszahúzódott, rétegesen felgyűrődött oxidhártya alakítja ki. Szerkezete lemezes, rétegelt. A gázhólyag az öntvény felső részében nyitott, szabálytalan nyomvonala révén szivárgási útvonalat, hibát okozhat.

A gázhólyag képződésének elkerülésére számos technológiai lehetőség áll rendelkezésre. A következőkben bemutatott ajánlásokkal jelentősen csökkenthető a gázhólyag okozta öntvényhibák kialakulása. A legbiztosabb megoldás olyan kötőanyagrendszer használata, amelyből nem, vagy csak nagyon kis mennyiségű gáz keletkezik. Törekedni kell a minimális kötőanyagtartalom használatára, hiszen ezzel jelentősen csökkenthető az éghető anyagok mennyisége [8–12]. További megoldást jelenthet a késleltetett gázfejlődésű kötőanyagrendszerek alkalmazása. Gázfejlődés szempontjából a fenol-uretános rendszerek a legkedvezőbbek, míg a szilikát-észter kötőanyagrendszerek a kezdeti nagy gázfejlődésük miatt kerülendők.

A homokmag gázelvezető képességét durva homok alkalmazásával vagy a magban elhelyezett gázelvezetők segítségével lehet javítani. Indokolt esetben alkalmazható vákuum is, azonban a képződő kondenzátum miatt a vákuumrendszer gyakori karbantartása szükséges.

A homokmag kötőanyagának kiégése során a felszabaduló illékony anyagok a homokmag legfelső részében koncentrálódnak. Amennyiben a tervezés lehetővé teszi, törekedni kell olyan elrendezésre, ahol a maggáz szabadon tud felfelé áramlani és kilevegőzni.

Az agyagbázisú mag és formázóanyag-javító paszták jelentős mennyiségű vízgőzt adhatnak le, ezért öntés előtt a szárításuk javasolt.

Maghomokkeverék készítésénél a kötőanyag egyenletes eloszlatását kell biztosítani a homokszemcséken, ugyanis a nem megfelelő keverés során gyantagócok maradhatnak a homokmagban, ami öntés során akár gázrobbanást is okozhat.

A fém/forma határfelületen kialakuló repedezett, tekervényes oxidhártyán keresztül a maggáz könnyedén be tud törni az olvadékba. Csökkenteni kell az oxidáló közeg és a fémolvadék közvetlen érintkezését. Különösen a nagyobb cink- és a magnéziumtartalmú alumíniumötvözetek esetén, mivel ezen ötvözetek oxidációs hajlama nagyobb.

Hasonló következménnyel járhat a külső és a belső fémhűtővasak használata is, ugyanis az illékony anyagok a folyékony fémfront előtt haladva ezeken a felületeken kondenzálódhatnak. Amikor a folyékony fém végül a hűtővashoz érkezik, a kicsapódott kondenzátum elpárolog, és gázhólyagot eredményez. Megoldást a hűtővasak kerámiai réteggel történő bevonása, majd szárítása jelenthet, ennek köszönhetően egy inert, áteresztő és nem nedvesítő felületet kapunk. A barázdált, érdes felületi réteget az olvadék nem nedvesíti, így a barázdák alja szellőzőként működhet, lehetőséget adva a gázok szabad tágulására és eltávozására [6].

Campbell [6] a gázhólyag elkerülése érdekében az öntési hőmérséklet növelését javasolja. Elmélete szerint így a maggázoknak lehetőségük van a folyékony fémen keresztül kilevegőzni, a dermedés kezdetén létrejövő vékony kéreg kialakulása előtt. Ez legtöbb esetben az öntvény károsodásával párosul, hiszen az elszökött gázhólyag a nyomvonala révén szivárgásos öntvényhiba kialakulásához vezethet. Erbslöh és társai [13] az öntési hőmérséklet, a formatöltési sebesség és a metallosztatikus nyomás növelésére hívja fel a figyelmet.

2. Kísérleti körülmények

Cikkünkben bemutatjuk az Al-7%Si-0,35%Mg-0,4%Cu öntészeti alumíniumötvözet három különböző (680-730-780 °C) öntési hőmérsékleten, 70 mm átmérőjű öntvények esetén, azonos méretű homokmagokból felszabaduló gázok nyomásváltozásának vizsgálatát.

A kísérleti körülmények megalkotása a korábban alkalmazott kísérleti összeállítások továbbfejlesztése alapján történt [14–16]. A homokmag geometriája minden esetben Ø 30 × 100 mm volt. A mag öntvénybe történő belógási

hossza 70 mm volt. A mag 30 mm mélyen ült a magfészekben, ami megakadályozta a formatöltés közbeni elmozdulását. A metallosztatikus nyomással arányos, homokmag feletti olvadékoszlop magassága 50 mm volt. A 70 mm átmérőjű, 4°-os formázási ferdeségű kísérleti öntvény műszaki rajza a 2. ábrán látható. A 3. ábrán bemutatjuk a kísérleti öntvényt a magokkal és a beömlőrendszerrel. A 4. ábrán a kísérleti összeállítás látható a formaszekrénnyel, az adatgyűjtővel és a nyomástávadókkal.

2. ábra. A kísérleti öntvény metszete

3. ábra. a) kísérleti öntvény magokkal és a beömlőrendszerrel,
b) a homokmagot tartalmazó öntvény metszete, c) az üreges öntvény metszete

4. ábra. Kísérleti összeállítás. Bal oldalon az alsó formaszekrény, a nyomástávadók és az adatgyűjtő. Jobb oldalon az alsó és felső formafél lezárt állapotban.

A kísérleti homokmagok önkötő furángyantás homokkeverékből készültek 1 m/m% gyanta- és 0,5 m/m% katalizátortartalommal. A homokmagok térfogatsűrűsége minden esetben 1,5 g/cm³ volt. A homokmagok előállításához 0,22-0,3 mm szemcseméretű, sajdikovói homokot használtunk. Az alkalmazott, közel azonos szemcseméret esetén kiküszöbölhetők az eltérő granulometriai tulajdonságokból származó zavaró hatások. A fejlődő gázok elvezetésére szolgáló acélcsövet (Ø 6 × 300 mm) a próbatest axiális középvonalába, a fém/ forma határfelülettől 5 mm-re helyeztük el [16]. A homokmagból fejlődő gázokat szilikon cső segítségével továbbítottuk a nyomástávadóhoz. Kísérleteink során a homokmag felső síkja felett 5 mm-re, védőcsőben elhelyezett K típusú hőelem segítségével mértük az olvadék hőmérsékletét. A forma bentonitos-keverékből készült, 8% bentonit, 4% víz felhasználásával. A mérésekhez három Baumer típusú frontmembrános nyomástávadót, míg az adatgyűjtéshez egy univerzális 8 csatornás HBM QuantumX-MX840B típusú mérőerősítőt használtunk.

3. Kísérleti eredmények

A magban kialakult gáznyomásértéket a gázfejlődés intenzitása és a gázok tágulását akadályozó felületre kifejtett erők határozzák meg. A magban feltorlódott gázok út-

5. ábra. Az olvadék hőmérsékletének, valamint a felszabaduló gázok nyomásváltozása az idő függvényében

ját a homokmag homokszemcséi között található tekervényes járatok, valamint a gáz/olvadék határfelületen fellépő erők akadályozhatják. A természeti törvények alapján a gázok a kisebb ellenállás felé áramlanak. A magok gázfejlődési intenzitása nem egyenletes, az elején nagy mennyiségű gáz keletkezik, aztán csökken a fejlődő gáz mennyisége. Az 5. ábrán a homokmagból felszabaduló gázok nyomásának és az olvadék hőmérsékletének változása látható az idő függvényében.

A vizsgált öntési hőmérsékletek esetén a felszabaduló gázok nyomáseredményeiből megállapítható, hogy az öntési hőmérséklet növelésével csökken a maximális gáznyomás (p_{max}) értéke. Az öntési hőmérséklet növelésével nő a homokmagok hőterhelése, így várhatóan nagyobb gáznyomásra számítanánk. Azonban különböző hőmérsékleteken az olvadék szilárd fázisaránya jelentősen eltér egymástól, ami a maggáz megjelenési formáit is befolyásolhatja. A nagyobb szilárd fázisaránnyal rendelkező olvadék esetén a gáz/olvadék határfelület alatt a gázok feltorlódhatnak, nagyobb nyomást eredményezve. Kis szilárd fázisaránnyal rendelkező olvadékok esetén a maggáz útja nem akadályozott, így önálló gázhólyagok formájában az olvadékba áramolhatnak.

A Thermo-Calc program segítségével lehetőség van különböző összetételű ötvözetek adott hőmérsékleten történő szilárd fázisarányának a meghatározására. A p_{max} időpontjához tartozó hőmérsékletértékeket (T_{mért}) összevetettük a Thermo-Calc programban számolt hőmérsékletértékekhez (T_{számolt}) tartozó szilárd fázisarányokkal (f_s). Kísérleteink során a mag felett 5 mm-re mértük az olvadék hőmérsékletét, a következőkben bemutatott értékek ebben a pontban érvényesek. A mag/olvadék határfelületen jelenlévő szilárd fázisarány nagyobb. Az *1. táblázat* tartalmazza a különböző öntési hőmérséklet esetén a magokból felszabaduló gázok nyomásának maximális értékét és megjelenési időpillanatát, valamint az olvadék mért és számított hőmérsékletét és a hozzá tartozó szilárd fázisarányt.

A vizsgált (Al-7%Si-0,35%Mg-0,4%Cu) öntészeti alumíniumötvözet Scheil-féle lehűlés alapján számított szilárd fázisarány és a fejlődött gázok nyomásának kapcsolatáról elmondható, hogy a legnagyobb szilárd fázisarány (32%) esetén alakul ki a legnagyobb gáznyomás (3,171 mbar).

A különböző öntési hőmérsékletek esetén kialakuló eltérő szilárd fázisarányok és a homokmagokból fejlődő gázok nyomáskülönbségei miatt az öntvényeket további vizsgálatoknak vetettük alá. Az öntvényekben található gázhólyagok megjelenési formáit CT, optikai és pásztázó elektronmikroszkóp (SEM) segítségével vizsgáltuk. A 6. ábrán a komputertomográfiás vizsgálat során kimentett DICOM-metszeteken a különböző öntési hőmérsékleten képződött gázhólyagok jellegzetes alakja látható. A gázhólyag méretét és az

 táblázat. Különböző öntési hőmérséklet esetén a p_{max} értéke és megjelenésének időpillanata, valamint az olvadék hőmérséklete és a hozzá tartozó szilárd fázisarány

Öntési hőmérséklet, °C	p _{max} , mbar	t _{p_max} , s	T _{mért} , °C	T _{számolt} , °C	f _s
680	3,171	34	594,97	594,85	0,321
730	2,449	39	599,19	599,85	0,262
780	1,976	40	615,01	615,85	0,002

6. ábra. Különböző öntési hőmérsékleten (balról jobbra haladva 680, 730 és 780°C-on) öntött darabokban található gázhólyagok

öntvény névleges méretétől való eltérését a myVGL program segítségével vizsgáltuk.

A felvételeken látható, hogy a 680 °C-on öntött darab fém/mag határfelületét a maggáz meggörbítette, valamint egy összefüggő gázhólyag alakult ki az öntvényben. A jelenség azzal magyarázható, hogy amennyiben a feltorlódott, nagy nyomású gázok elérik a kritikus nyomást, képesek nagy, összefüggő gázhólyag formájában betörni az olvadékba. A 730 °C-on öntött öntvényben kisebb (Ø 7 mm), jól elkülöníthető gázhólyagok jelenlétét tapasztaltuk. A 780 °Con öntött darabban sok, kis, diszperz gázhólyag található. Az olvadékok gáztartalmát az öntés során igyekeztünk azonos szinten tartani. Az általunk vizsgált azonos ötvözetminőség és öntvénygeometria esetén a szívódásos zsugorodás mértéke megegyezik.

A gázhólyagok további vizsgálata céljából a kísérleti öntvényekből optikai mikroszkópos vizsgálatra alkalmas darabokat munkáltunk ki, valamint a darabok töretfelületét pásztázó elektronmikroszkóp segítségével is vizsgáltuk. Az 50 × 70 mm-es mintákról mozaik mikroszkópos felvételeket készítettünk, ugyanis a nagyméretű gázhólyagok a mikroszkóp legkisebb, 50 ×-es nagyítása esetén sem fértek bele a látótérbe. A mozaikkép készítése során a mikroszkóp 50 ×-es nagyítású képekből, mozaikszerűen állítja össze a felvételt. A következőkben a 680 °C-on és a 780 °C-on öntött minták porozitáselemzését mutatjuk be. A porozitástartalom százalékos meghatározása az ImageJ-program segítségével történt. A 7. ábrán a darabok bináris képei láthatóak. A darabok bináris képein látható, hogy a 680 °C-on öntött darabban a fém/mag határfelület jelentősen meggörbült, és egy nagy összefüggő gázhólyag alakult ki. A 780 °C-on öntött darabban a fém/mag határfelület csak kismértékben tér el a névleges mérettől, azonban az öntvényben elszórtan sok kis gázhólyag figyelhető meg. Az összporozitás-tartalom (beleértve a maggáz által meggörbített határfelületet) 680 °C esetén 9,051%, míg 780 °C-on 7,373%.

Az öntvényekben található kisebb gázhólyagok morfológiáját és méretét az öntvények töretfelületeiről készült SEMfelvételeken mutatjuk be, amelyek a 8. ábrán láthatók.

A töretfelületen található gázhólyagok lenyomatának mérete 680- és 730 °C-on ~410-485 μm, nyomvonallal együtt ~1029 μm. A 780 °C-on öntött darabban a gázhólyagok alakja lapított, méretük ~790 × 150 μm.

Összefoglalás

Az alkalmazott AlSi7-es öntészeti ötvözet öntése esetén magokból fejlődő gázok nyomásának vizsgálata során arra a következtetésre jutottunk, hogy az öntési hőmérséklet növelésével csökken a gázok maximális nyomásának értéke. Az olvadék szilárd fázisaránya jelentősen befolyásolja a maggáz megjelenési formáját. 680 °C-os öntési hőmérséklet esetén a magot körülvevő olvadéknak már jelentősen nagy a szilárd fázisaránya (32%), aminek köszönhetően a magban nagy nyomás alakulhat ki (3,171 mbar). Amennyiben a maggáz eléri a kritikus nyomást, összefüggő gázhólyag formájában képes betörni az olvadékba. 780 °C-os öntési hőmérséklet esetén az olvadék szilárd

7. ábra. A 680 °C-on és a 780 °C-on öntött darabok bináris képei (fekete: porozitás, fehér: alumínium)

 8. ábra. Az öntvény töretfelületén található gázhólyagok (felülről lefelé haladva 680-730-780 °C-on öntött darabokban)

fázisaránya csekély (0,2%), így a maggázok, ha legyőzik a határfelületi összehúzó erőt, akadálytalanul az olvadékba áramolhatnak kicsi, diszperz gázhólyagokat eredményezve.

Köszönetnyilvánítás

A CT-vizsgálatok a Miskolci Egyetem 3D Finomszerkezet vizsgálólaboratóriumában található, YXLON FF35 típusú berendezés segítségével készültek. A SEM-felvételeket a Thermo Scientific Helios G4 PFIB CXe berendezés segítségével *Kovács Árpád* készítette. A szilárd fázisarány meghatározását a Thermo-Calc (verziószáma: 4.1.0.4995 és a SSOL5 (SGTE General Alloy Solution Database, v 5.0)) program segítségével *Végh Ádám* készítette. A cikkben ismertetett kutatómunka az EFOP-3.6.1-16-2016-00011 jelű "Fiatalodó és Megújuló Egyetem – Innovatív Tudásváros – a Miskolci Egyetem intelligens szakosodást szolgáló intézményi fejlesztése" projekt részeként – a Széchenyi 2020 keretében – az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósult meg.

Irodalom

- L. Winardi, H. E. Littleton, C. E. Bates: Pressures in Sand Cores, AFS Transactions, 2007. vol.115., Paper 07-062(04).pdf, 303–312.
- Y. Maeda, H. Nomura, Y. Otsuka, H. Tomishige, Y. Mori: Numerical simulation of gas flow through sand core. Int. J. Cast Metals Res., 2002, 15, 441–444.
- [3] Laurentiu Nastac, Shian Jia, Mihaela N. Nastac & Robert Wood: Numerical modeling of the gas evolution in furan binder-silica sand mold castings – International Journal of Cast Metals Research VOL. 29. NO. 4, 2016, 194–201.
- [4] Hassan Khawaja: Semi-implicit method for pressure-linked equations (SIMPLE) solution in MATLAB – Int. Jnl. of Multiphysics Volume 12 Number 4, 2018, 313–325.
- [5] A. J. Starobin and C. W. Hirt: FLOW-3D Core Gas Model: Binder Gas Generation and Transport in Sand Cores and Molds – Flow Science Report 04-14, 2014
- [6] John Campbell: Complete Casting Handbook 10.5. Rule 5: 'Avoid core blows' 635–659.
- [7] Kaptay György: Határfelületi jelenségek a fémesanyaggyártásban. 1. rész. A határfelületi erők osztályozása, BKL Kohászat 142. évfolyam, 3. szám, 2009, 39–46.
- [8] S. Ravi, J. Thiel: New Method for Measuring Gas Evolution in Chemically Bonded Sands AFS Transactions, 2016
- [9] J. Mocek, A. Chojecki: Evolution of the gas atmosphere during filling the sand mould with iron alloys. Archives of Foundry Eng. 9, 2009, nr 4 pp 135–140.
- [10] H. W. Dietert, A. L Graham, R. M. Praski: Gas evolution in foundry materials. Its source and Measurement. AFS Trans. 1976, 55, pp 221–228.
- [11] J. Orlenius, U. Gotthardsson, A. Diószegi: Mould and Core Gas Evolution in Grey Iron Castings, International Journal of Cast Metals Research 2008.
- [12] W. D. Scott, P. A. Goodman, R. W. Monroe: Gas generation at the Mold-Metal Interface, AFS Transaction 78-150, 1978, 599–610.
- [13] IKO-Erbslöh, Jörg Baier, Martin Köpper: Manual of Casting Defects, Incidence and avoidance of defects attributable to moulding sands, 1994., p. 51–55.
- [14] Tóth L.: Gázfejlődés az öntödei formázó és maghomok keverékekben. A bentonitos formázókeverékek aktív bentonit és víztartalmának összefüggése a plaszticitással és a repedési szilárdsággal, PhD-disszertáció, ME Öntészeti Intézet, Miskolc, 1997.
- [15] A. Chojecki, J. Mocek: Gas pressure in sand mould poured with cast iron, Archives of Foundry Engineering Volume 11, Issue, 1/2011, 9–14.
- [16] S. Ravi, J. Thiel: Prediction of Core Gas Pressure from Chemically Bonded Sand Molds Using Process Simulation Software, AFS Transactions, Paper 17-097 v125 –2017, Page 1 of 8